
1、光飞时间(Time Of Flight)技术
TOF技术是通过主动发射调制过后的连续光脉冲信号至目标面上,然后利用传感器接收反射光,利用它们之间的相位差进行运算和转换得到距离/景深数据。

TOF优点在于可以做到对逐个像素点的深度进行计算,近距离情况下精度可以很高;缺点则在于室窄(远距离无法保证进度)以及成本较结构光要高。
目前的主流技术TOF技术采用SPAD(single-photonavalanche diode,单光子雪崩二极管)阵列来精确检测并记录光子的时间和空间信息,继而通过三维重构算法进行场景的三维重构。SPAD是一类高灵敏度的半导体光电检测器,被广泛应用于弱光信号检测领域。

2、结构光(structure light)技术
结构光技术的基本原理是:在激光器外放置一个光栅,激光通过光栅进行投射成像时会发生折射,从而使得激光最终在物体表面上的落点产生位移。当物体距离激光投射器比较近的时候,折射而产生的位移就较小;当物体距离较远时,折射而产生的位移也就会相应的变大。这时使用一个来检测采集投射到物体表面上的图样,通过图样的位移变化,就能用算法计算出物体的位置和深度信息,进而复原整个三维空间。
采用结构光技术的代表产品包括Kinect 1、Intel RealSense Camera(F200&R200)以及第一代project tango产品等等。

结构光技术优点在于一次成像即可读取深度信息,缺点在于解析度受光栅宽度与光源波长限制、对衍射光学器件(DOE)要求较高,也同样会受室外可见光红外线较大影响。
3、多角成像(Multi-Camera)技术
多角成像技术是基于视差原理,并利用成像设备从不同的位置获取被测物体的两幅图像,通过计算图像对应点间的位置偏差,来获取物体三维几何信息的方法。

多角成像技术优点在于室内室外皆适用,不受日光影响以及几乎不受透明屏障影响,缺点则在于计算量巨大、算法复杂,对硬件具有较高要求。
下表主要从软件复杂性、延迟、是否主动照明、探测距离、分辨率等指标对三种主流技术进行对比:

从目前已经上市的产品技术运用来看,结构光/TOF的应用具有成熟,且技术原理上殊途同归。初代产品大多采用结构光技术,而新一代产品采用TOF技术的数量则开始逐渐提升,我们认为TOF技术未来将凭借自身在软件复杂性、延迟、精度、扫描速度等领域的优势成为最具应用前景的3D技术;而结构光则在成本优势、一次性成像等方备较好优势,有望成为手机应用的排头兵。



(二)国际消费电子大厂均已具备成熟3D Sensing技术苹果积淀最为深厚
自2009年以来,各大消费电子巨头纷纷开始布局3D领域,近两年里更是有加速迹象!以Intel、Microsoft、Sony以及高通为代表的巨头近年来在TOF 3D传感器、手势识别算法、下游应用软件解决方案等领域展开并购整合。

苹果在3D技术及其下游应用领域布局已久,我们预计iPhone十周年机型有望祭出这一杀手锏技术。纵观消费电子创新历史,大的终端客户具有培育新兴市场、引领创新趋势、带动行业技术革新的能力,一旦采用其他厂商高端厂商必定迅速跟进,整个产业有望迎来爆发式增长。
苹果最早于2010年在3D领域展开布局,目前已经收购多家3D成像、人脸识别及手势识别企业。在2010年9月收购瑞典算法公司Polar Rose,在2013年收购Prime Sense,在2015年收购机器学习与图像识别公司Perceptio和以色列3D技术公司LinX,以及动作捕捉公司Faceshift之后,苹果公司于2016年收购脸部识别系统公司Emotient。
本文来自电脑杂谈,转载请注明本文网址:
http://www.pc-fly.com/a/tongxinshuyu/article-65175-3.html
更新了
行贿最多的就是浙商